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Abstract 

Structure factors with known magnitude and phase are 
constructed for seven different molecular crystals in 
non-centrosymmetric space groups and used to calibrate 
the retrieval of structure-factor phase information with 
several different scattering factor models. Monopole 
models are confirmed to be inadequate, yielding poor 
estimates of phases and underestimating the Fourier 
deformation electron density by as much as 50%. 
Multipole models are generally successful, with the 
conspicuous exception of hexamethylenetetramine 
(HMT). The results confirm the known difficulty of 
phasing structure-factor magnitudes for HMT, but 
reveal a broad spectrum of behaviour of phase retrieval 
in various non-centrosymmetric space groups, depend- 
ing partly on the number of reflections with restricted 
phases. For several systems (urea, hydrogen peroxide, 
L-alanine and borazine) the results confirm that multi- 
pole refinements of scattering factor models against 
experimental data are capable of yielding highly 
accurate phases and hence reliable electron distribu- 
tions. For the exceptional case of HMT a simple 
eigenvalue filtering technique enables retrieval of 
phases and electron densities with an accuracy compar- 
able to the best of the other non-centrosymmetric 
systems studied. 

I. Introduction 

In the charge density analysis of X-ray diffraction data 
for non-centrosymmetric space groups it is widely 
recognized (but not always!) that only structure-factor 
magnitudes can be obtained directly from the experi- 
ment; the phases are model dependent (see, for 
example, Coppens, 1982; Blessing & Lecomte, 1991). 
In order to determine the reflection phases it is 
necessary to fit an appropriate structure-factor model 
to the amplitude data and then infer the values of the 
phases. Although the generally accepted criterion for a 
successful fit to the amplitudes is the lowest weighted 
sum of the squared residuals between the observed and 
calculated structure-factor magnitudes, this does not 
guarantee that the phases calculated from the model will 
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be adequate to produce a chemically significant 
electrostatic property. While phases from centrosym- 
metric space groups are usually well determined (except 
for small reflections), the same confidence cannot 
always be placed on phases deduced from non- 
centrosymmetric space groups. 

Some time ago Coppens (1974) and Feil (1977) 
warned of the hazards in extracting electrostatic 
properties from X-ray diffraction data derived from 
non-centrosymmetric crystals, but since then there have 
been many, apparently successful, charge density 
studies reported on non-centrosymmetric crystalline 
materials. However, very few of these studies have 
analysed the changes in phase arising from various 
models employed to determine phases. Exceptions are 
the pioneering work on sucrose (Hanson, Sieker & 
Jensen, 1973), urea and thiourea (Mullen & Scheringer, 
1978; Mullen, 1980, 1982), LiHCOO.H20 (Thomas, 
1978) and H 2 0 2  (Savariault & Lehmann, 1980), as well 
as the more recent work by Lecomte and co-workers on 
peptides and related molecules (Lecomte, 1991; 
Souhassou, Lecomte, Blessing, Aubry, Rohmer, 
Wiest, B6nard & Marraud, 1991; Lecomte, Ghermani, 
Pichon-Pesme & Souhassou, 1992; Souhassou, 
Lecomte, Ghermani, Rohrner, Wiest, B6nard & 
Blessing, 1992; Wiest, Pichon-Pesme, B6nard & 
Lecomte, 1994). Most recently, El Haouzi, Hansen, 
Le H6naff & Protas (1996) discussed this aspect of the 
phase problem in some detail, with specific reference to 
GaAs and LiB305. A variety of structure-factor models 
have been used in many of these studies. The atomic 
positional and thermal parameters have often been fixed 
at values derived from neutron diffraction or refined 
using the X-ray data. Standard atomic form factors have 
been used and also a variety of multipole expansions of 
the atomic charge density, and even a bond charge 
model. While phase angles derived from different 
models have been compared, no studies have calibrated 
the extraction of phase angles against a realistic set of 
theoretically derived phases. Generally, more flexible 
models have been considered to produce more reliable 
estimates of the phases. 

The present study attempts to examine this problem 
through the use of model structure factors with known 
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phases. These are generated for several non-centrosym- 
metric space groups that incorporate electron densities 
for simple molecules derived from accurate Hartree- 
Fock wavefunctions. The sets of structure factors are 
then used as 'observed' structure factors in refinements 
using several different multipole models and the 
calculated phases compared with the 'observed' phases. 
In addition, deformation density maps are plotted, 
phasing the 'observed' amplitudes with the results of the 
various refinements. 

Our focus throughout is on organic molecular crystals 
rather than high-symmetry inorganics and our results 
should complement those of El Haouzi et al. (1996).  We 
note that experimental determination of phases is an 
active area of research (see, for example, Shen & 
Colella, 1986; Hiimmer, Weckert & Bondza, 1990; 
Spence, 1993), although the only useful results (for the 
purposes of charge density analysis) appear to be 
measurements of the phase of the 002 reflection (with 
estimated error 0.07 °) in CdS (Zuo, Spence & Hoier, 
1989) and the 002 reflection in BeO [with estimated 
error 0.52 ° (Zuo, Spence, Downs & Mayer, 1993)]; for 
organics, triplet phases can be determined with an 
accuracy of -,~45 ° (Htimmer et al . ,  1990). 

2. The importance of non-centrosymmetric space 
groups in charge density analysis 

What fraction of charge density studies involves non- 
centrosymmetric space groups? In a recent review of 
charge density studies published between 1992 and 1994 
(Spackman & Brown, 1994), the ratios of non- 
centrosymmetric to centrosymmetric studies in various 
categories were found to be: 

inorganic materials: 8/50 = 16 % 
coordination compounds: 6/16 = 38 % 
molecular crystals (excluding 10/42 = 24% 

biomolecules) 
biomolecules: 5/11 -- 56%. 

Moreover, the space groups P212121 and P21 
between them account for either 29.7 (Donohue, 
1985) or 18.3% (Mighell, Himes & Rodgers, 1983) of 
the known organic molecular crystal structures, depend- 
ing on how the counting is done (see Srinivasan, 1991). 
These statistics, coupled with the preponderance of 
non-centrosymmetric space groups for biomolecules 
and the increasing interest in the properties of crystal- 
line non-linear optical materials (Howard, Hursthouse, 
Lehmann, Mallinson & Frampton, 1992; Radaev, 
Maximov, Simonov, Andreev & D'yakov, 1992; 
Fkyerat, Guelzim, Baert, Paulus, Heger, Zyss & 
P6rigaud, 1995), for which the space group must be 
non-centrosymmetric (Nicoud & Twieg, 1987), suggest 
that increasing numbers of such studies will be 
performed in the future. 

From the existing studies of model phase dependence 
cited above it has been firmly established that the use of 
an inadequate phasing model (e.g. spherical atoms) 
typically leads to an underestimate in peak heights in 
Fourier deformation electron density maps, and by as 
much as 50% (Savariault & Lehmann, 1980), although 
this is clearly space-group-dependent because of the 
varying contribution from restricted phases (see below). 
Although most current charge density studies performed 
on non-centrosymmetric molecular cystals seek more 
than a Fourier deformation density, a number of recent 
analyses have presented electron density maps as the 
sole basis for any chemical discussion (see, for 
example, Belaj, 1992; Radaev et al . ,  1992; Boese, 
Maulitz & Stellberg, 1994; Antipin, Chernega, 
Lysenko, Struchkov & Nixon, 1995), sometimes 
without acknowledging the existence of a phase problem 
p e r  se. 

3. Description of the problem and outline of 
procedure 

Figure 1 summarizes our attack on the problem and the 
various terms are defined as 

F,(H) = IF,(H)I exp (i~ot(H)), 

Fro(H) -- IFm(n)l exp (i~om(H)), 

Z ~ =  ~0 t --~0m, 

the 'true' structure 
factor and phase; 
the model structure 
factor and phase; 
the phase angle 
difference (mod 2:0. 

The starting point of the study is the generation of 
accurate Hartree-Fock wavefunctions using a polarized 
double-zeta basis set with nuclear coordinates obtained 
from known crystal structures. From the superposition 

Ft - Fm 

Ft 

Fm 

q~m 

Fig. 1. A statement of the phase problem as pursued in this study. F t is 
the 'true' structure factor derived from a superposition of molecular 
electron densities in the unit cell, Fm the model structure factor 
(either spherical atom or multipole model), and tp~ and ~o m their 
respective phases. 
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Table 1. The molecular crystals used in the study, their 
space group, the numbe~ of reflections generated for 
each ((sinO/)L),,~= 1.0,4- ), the number and percentage 
of  reflections with restricted phases and the reference 

for the crystal data 

Space 
Molecule group Nreflection s 
Acetamide R3c 1382 
Hydrogen P4 t 212 350 

peroxide 
Urea P~,21 m 403 

Borazine P4 3212 1252 
Cyclopropane Cmc2 ~ 716 

Hexamethylene- 143m 164 
tetramine 
(HMT) 

L-Alanine P212 t 21 2033 

Nrestricted Reference 
11 (< 1%) Jeffrey et al. (1980) 

176 (50%) Savariault & 
Lehmann (1980) 

133 (33%) Swaminathan, 
Craven & 
McMullan (1984) 

490 (39%) Boese et al. (1994) 
89 (12%) Nijveldt & Vos 

(1988) 
44 (27%) Kampermann 

et al. (1994) .  

535 (26%) Destro, Marsh & 
Bianchi (1988) 

of these molecules in the unit cell, two sets of structure 
factors were generated; one set ( 'dynamic ')  incor- 
porates experimental thermal motion, while the other 
set ( 'static') does not. Full details of the method have 
been given in a previous paper (Spackman & Byrom, 
1996) and will not be repeated here. These sets of 
structure factors have known magnitudes and phases 
and, therefore, enable us to determine how well a 
number of structure factor models retrieve both the 
phases and magnitudes of Ft(H ) and, just as impor- 
tantly, the errors arising from approximating ~/9 t by ~0 m in 
a Fourier map of Ap. We emphasize that this is 
distinctly different from all previous discussions of 
phase errors, where the phase difference has been either 
that between two spherical atom models [e.g. using 
X-ray (X) and neutron (N) position and thermal 
parameters] or between a multipole model and a 
spherical atom model. 

Table 1 lists details for the seven non-centrosym- 
metric molecular crystals studied, in particular the 
number (Nrestricted) and proportion of reflections with 
phases restricted by the space group's symmetry [details 
of the classes of reflections involved in individual cases 
can be obtained from Table 3.1 of Giacovazzo (1992)]. 
The role of restricted phases is an interesting one, which 
has been discussed previously by Souhassou et al. 
(1991), and Table 1 highlights the differences for these 
space groups. Our choice of crystals ranges from 
acetamide, where less than 1% of the reflections have 
restricted phases, to hydrogen peroxide, for which half 
of the reflections need not be phased by the model. As 
we demonstrate below, these proportions have a direct 
bearing on the degree of success in retrieving the ' true'  
phases. 

For each molecular crystal, IF,(H)I were then fitted 
with four different models using VALRAY (Stewart & 
Spackman, 1983), with unit weights applied to each of 

the structure factors. All refinements were based on IFI, 
with fixed positional parameters, and thermal motion 
parameters either fixed at zero (static data) or the 
appropriate experimental X-ray or neutron values used 
to generate the model data (dynamic data). Four 
scattering factor models were refined against each data 
set: 

3.1. IAM: Independent atom model 

Spherical atomic scattering factors (Clementi & 
Roetti, 1974) were used with an overall scale factor. 
Since these refinements did not involve variation of 
atomic position and thermal parameters, this is rather 
different from (and less flexible than) the spherical atom 
models described previously by others (e.g. Thomas, 
1978). 

3.2. A: Monopoles only 

A localized core (Clementi & Roetti, 1974; Stewart, 
1980) was used for non-hydrogen atoms, with all core 
populations constrained to be equal. Localized valence 
functions were used to describe the valence shell of all 
atoms (single exponential in the case of H) and a 
population parameter and radial scale factor was refined 
for each of these valence functions, subject to the 
constraint that all atoms of the same type have the same 
scale factor (but different populations). This model is 
basically the same as the x-refinement model (Coppens, 
Guru Row, Leung, Stevens, Becker & Yang, 1979). 

3.3. B: Multipole model with fixed exponents 

As for A plus higher multipoles on each atom 
(dipoles, quadrupoles and octopoles on B, C, N, O; 
dipoles and quadrupoles on H) with single exponential 
radial functions, r~exp(-otr),  the radial parameters 
fixed at the standard molecular (SM) values (Hehre, 
Stewart & Pople, 1969; Hehre, Ditchfield, Stewart & 
Pople, 1970). For H we chose n -  0, 1,2 for mono- 
poles, dipoles and quadrupoles, respectively, and for all 
other atoms n -  2, 2, 3 for dipoles, quadrupoles and 
octopoles, respectively. The same coordinate system 
was used for all atomic multipole functions and all 
functions allowed by the site symmetry of the atom were 
included (i. e. approximate molecular symmetry was not 
imposed on the pseudo-atom model).* 

3.4. C: Multipole model with optimized exponents 

As for B with radial parameters optimized, but 
constrained such that all higher-multipole radial 

*There appear to be some errors in the relationships between 
multipole populations for HMT listed by Terpstra, Craven & Stewart 
(1993) in their Table 2. Straightforward group theory analysis 
provides: C (2mm) q5 = -0.6052qi, 05 = -0.7915°t; N (3m) o 5 = 
06 -- -0.791501, o 7 = 1.3829Ol; H (m) q5 = -0.6052ql- All other 
relationships are correct. 
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parameters  on each part icular  atom type are equal. For  
H atoms, monopole exponents/scale factors were 
optimized independently of  higher multipole exponents.  

In order  to assess the retrieval of  the true structure- 
factor phases several statistics were generated for each 
structure-factor  model:  

(i) mean  (signed) phase angle er ror  (reported in °): 

('44O) = $"],,44olNunrestricted ; 

(ii) root-mean-square  ( r .m.s . )  phase angle er ror  
(reported in o) 

rms( ,44o)  - -  [~(,44o)2/Nunrestricted]l/2; 

(iii) mean (signed) arc-length er ror  (electrons, with 
A4O in radians) 

(F,- FM> "~ (IF, I,44o)= XlF, l,44o/Nu~est~icted; 
(iv) r.m.s, arc length error (electrons, with ,44o in 

radians) 

r.m.s.(IFtl,44o ) = [ElFt12(,44o)2/Nunrestricted]l/2; 
(v) approximate  r .m.s ,  e r ror  in the Four ier  electron 

density (e ~ - 3 ,  with ,44o in radians) 

r .m.s.(3p) = V - ] [ E m u l t  x iFtI2(A4o)2] 1/2. 

The summations in ( i)-(v)  are over only the symmetry-  
unique hkl and hence just  the unrestricted reflections, 
while that in (v) involves all symmet ry  equivalents (i. e. 
it includes the multiplicities of  the unrestricted reflec- 
t ions).* 

Both (,44o) and r.m.s.(,44o) are s t raightforward 
quantities, but the other statistics deserve further 
comment .  The arc-length er ror  IF,1,44o arises f rom the 
Fourier  residual electron density, in this case the 
difference between phasing IF, I with the true phases 
and the model  phases 

<Sp(r) = v - l ~  (IF,I exp(i%) 
sym 

- IF,I exp(i4o,,)) e x p ( - 2 s r i H  • r)  

= V -I ~ IFtl{exp(i4ot)-exp(i4o,n)} e x p ( - 2 s r i H  • r)  
sym 

"" V- l  ~ ] IFtl,44oexp(i { 4o, + ~ } ) e x p ( - 2 s r i H .  r) ,  
sym 

where the approximat ion in the last line is valid for 
small ,44o (see Appendix  B in Souhassou et al., 1991). 
The expression (v) above for the approximate  r .m.s .  
e r ror  in the electron density is derived readily f rom this 
expression using Parseva l ' s  theorem (see e.g. Coppens 
& Hansen,  1977). 

4. Results and discussion 

Histograms summarizing the statistics ( i)-(v) for 
models  A, B and C refined against static and dynamic 
data for all molecules are given in Figs. 2 -6 .  For  clarity 

(A~0) (o) 
1.00 

0.50 

0.00 

-0.50 

-1.00 

-1.50 

-2.00 

Urea Borazine Acetamide I.-Alanine 
Peroxide HMT Cyclopropane 

 _0.L L] ~ " 

Fig. 2. Mean phase angle error, (A40) (o), for six models. For each 
molecular crystal the bars represent, from left to right: A: static 
(white), B: static (grey), C: static (black), A: dynamic (white), B: 
dynamic (grey) and C: dynamic (black). Results for the IAM model 
have been omitted, but are similar to those for model A. 

12.0 
r.m.s. (L14o) (°) 

I0.0 

8.0 

6.0 

4.0 

2.0 

0.0 

Urea . Borazine [1] H MTcetamicyclopropa lne Alanine 

Fig. 3. R.m.s. phase angle error, r.m.s.(Atp) (°), for six models. The 
key to the bars is given in the caption to Fig. 2. 

lOO x <lFt P~>/F(O00) 
0.05 

Peroxide HMT Acetamide L-Alanine I 
Urea Borazine tlCyclopropan e 

o.oo j _ _  i - I _ ~ _  _ n J - i  . , 

0oH,, ii q 
00 !i 
-0.15 

* As commonly observed for centrosymmetric structures, in several 
refinements some reflections with very small IFI exhibited phase 
changes of i n .  The worst instances were borazine:static (IAM; A) and 
L-alanine:dynamic (A) where five such reflections behaved in this 
manner. To avoid undue bias in the statistics, all phase changes of +st 
were omitted from these sums. 

-0.20 

-0.25 

Fig. 4. Mean arc-length error, (IF/IA~0) [normalized to F(000)= 100], 
for six models. The key to the bars is given in the caption to Fig. 2. 
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we have omitted all IAM results from these figures as 
they closely parallel those for model A (r refinement) 
reported in the figures. Also, recognizing that F(000) 
ranges from 64 (urea) to 576 (acetamide) for our sample 
of molecular crystals, we have normalized results for 
(IFtlA~o) and r.m.s.(IF, lA(p) (Figs. 4 and 5) to an F(000) 
value of 100. 

Mean and root-mean-square (r.m.s.) phase angle 
errors are summarized in Figs. 2 and 3, respectively. 
For an unbiased outcome we expect a mean phase error 
near zero and this is confirmed for most models and 
systems with the striking exception of HMT. For all 
other systems, I(A~p)l _< 0.50 ° for all scattering factor 
models and, generally, but not always, multipole 
models perform better than a monopole model. In 
contrast, for HMT the mean error is often several 
degrees and multipole models can actually provide a 
mean phase error far worse than that from a spherical 
atom model. Perhaps a better measure of the overall 
retrieval of phases is the r.m.s, phase error (Fig. 3), 
since a model yielding large positive and negative phase 

0.45 
100 x r.m.s.(IFtlLl~o)/F(O00) 

Urea Borazine ! I I  Acetamide L-Alanine Peroxide HMT Cyclopropane 
0.40 

0.35 

0.30 

0.25 

0.20 

0.10 

0.05 

0.00 

Fig. 5. R.m.s. arc-length error, r.m.s.(IFtlA~0) [normalized to 
F(000) = 100], for six models. The key to the bars is given in the 
caption to Fig. 2. 

0.12 

r.m.s.(tJp) (e A-3) 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

Urea Borazine Ace t amide  L-Alanine 
Peroxide HMT Cyclopropane 

I, 
Fig. 6. Estimated r.m.s, error in the Fourier electron density, 

r.m.s.(~p) (in e A-3), for six models. The key to the bars is given in 
the caption to Fig. 2. 

errors may accidentally result in (A~o) near zero. From 
Fig. 3 it is again obvious that HMT is outstanding, but it 
is also much clearer here that model A (typical r.m.s. 
error of 3.0 ° or more) is always inferior to either of the 
multipole models B or C (typical r.m.s, errors near 
1.0 °) and, moreover, model C (optimized exponents) 
always provides a better retrieval of phases than model 
B (fixed exponents). 

The raw phase angle errors do not quite tell the whole 
story, however, since it is really the combination of the 
phase error, the magnitude of the structure factor and its 
location in reciprocal space which are important; a large 
phase error coupled with a small IF, I will often be of 
little consequence. For this reason, several recent 
experimental charge density studies report plots of an 
arc-length error, IFIA~0, versus sin0/2 or IFI, where 
Aq~ is the phase angle difference between multipole and 
spherical atom models (Souhassou et al., 1991; Fkyerat 
et al., 1995; Hamzaoui, Baert & Wojcik, 1996). In a 
similar vein, in Figs. 4 and 5 we summarize mean and 
r.m.s, arc-length errors for the systems and models 
studied. In both cases the vertical axis is in units of 
electrons [the results scaled to F(000) = 100 electrons] 
and hence can be readily interpreted in the context of 
either experimental errors or the typical magnitude of 
the deformation density contribution to structure 
factors. We see that the normalized mean arc-length 
error (Fig. 4) is within 0.05 electrons of zero for all 
systems and models, with the exception of HMT again. 
Curiously, models B and C are seen to perform 
significantly worse than model A for HMT and also 
model B is not as good as model C for HMT, acetamide 
and cyclopropane. Turning to 100 x r.m.s.(lFtlA~o)/ 
F(000) (Fig. 5) HMT again stands out, but cyclopro- 
pane is also a notable outlier. For urea, peroxide, 
borazine and L-alanine, models B and C are clearly 
superior to A, and C slightly better than B in all cases. 
However, for HMT both multipole models are inferior 
to the r-refinement model, for cyclopropane the multi- 
pole models represent at best a slight improvement over 
model A, while for acetamide model B is marginally 
better than A, and model C dramatically better than B in 
turn. We conclude that in well behaved cases (e.g. urea, 
peroxide, borazine and L-alanine) multipole models can 
yield normalized mean and r.m.s, arc-length errors of 
better than 0.05 electrons, while for less well behaved 
systems typical errors of 0.05-0.15 electrons are 
common and in HMT the errors lie between 0.20 and 
0.40 electrons. 

Our final histogram (Fig. 6) provides an estimate of 
the r.m.s, error incurred in a Fourier summation (to 
s i n 0 / 2 -  1.0A -1) of the electron density or deforma- 
tion density by using model phases rather than true 
phases. The results suggest that spherical atom models 
result in a error of between 0.02 to 0.06e,~-3, while 
multipole models will often reduce this to 0.01 e h,-3 or 
less. As before, HMT is exceptional: models B and C 
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incur greater r.m.s, errors than model A and up to 
0.10 e ~-3. For cyclopropane and acetamide a conven- 
tional multipole refinement (i.e. with fixed exponents) 
may still yield an r.m.s, error as large as 0.03 e A-3. 

The poor performance of the more flexible models for 
HMT is not surprising and has been discussed in 
considerable detail by Terpstra et al. (1993), 
Kampermann, Ruble & Craven (1994) and E1 Haouzi 
et al. (1996), and is rather well understood. What our 
results suggest, however, is that there is a broad 
spectrum of behaviour of charge density analyses in 
non-centrosymmetric space groups. HMT is somewhat 
extreme and exhibits features similar to those observed 
in charge density analyses of several high-symmetry 
inorganics such as GaAs, BN in the space group F43m 
(Will, Kirfel & Josten, 1986; Eichorn, Kirfel, 
Grochowski & Serda, 1991; El Haouzi et al., 1996) 
and BeO in P63mc (Downs, 1983). Cyclopropane and 
acetamide pose somewhat less of a problem, while for 
the other systems we can confidently predict that a 
multipole refinement will be capable of retrieval of 
phases to a high degree of accuracy. With reference to 
Table 1, we see that acetamide and cyclopropane 
possess substantially fewer reflections with restricted 
phases than all other examples (<1 and 12%, 
respectively). Although the importance of these 

restricted reflections to phasing via a multipole refine- 
ment will vary depending on the space group, the cell 
parameters and the particular classes of reflections, 
their number appears to be a fair indicator of success in 
phase retrieval. 

To highlight the impact of the various statistics in 
Figs. 2-6, plots of the conventional Fourier deforma- 
tion electron density have also been produced for urea, 
acetamide and HMT. The deformation densities were 
defined by 

A,o(r) = V-1 ~-~ (IF, I exp(i~0m) 
sym 

- IFt~MI exp(i~AM) ) exp(--2rritl • r), 

where the summation extends to sin 0/2 = 1.0 ~-1. Fig. 
7 displays the results for models IAM, A, B and C fitted 
to the dynamic data for urea, and the true (i. e. correctly 
phased) deformation density is provided for compari- 
son; Figs. 8 and 9 provide similar maps for HMT and 
acetamide, respectively. (Corresponding fits to static 
data for these three systems yield similar results, but 
with more sharply defined features; we focus here on 
fits to dynamic data because of the direct relevance to 
experimental data.) The figures clearly show that the 
use of a spherical atom model, either IAM or K 
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refinement, results in deformation density peak heights 
which are as much as 50% below the correct values. For 
acetamide and urea the progressive improvement 
A ---+ B ~ C is evident and almost quantitative agree- 
ment is observable between A,o maps phased with 
model C and the true phases. For HMT that is clearly 
not the case and, in accordance with unconstrained 
analyses of experimental data (Terpstra et al . ,  1993; 
Kampermann et al. ,  1994), both multipole models 
result in spurious peaks inside the cage near the N atom, 
opposite the 'lone pair' peak, as well as peak heights in 
the C - - H  bond which are clearly too high, and 
corresponding deep troughs elsewhere, although 
model B is clearly worse in this regard than model C 
(in complete accord with the r.m.s, error in the electron 
density, Fig. 6). These maps for HMT graphically 
demonstrate the nature of the problem for this system: 
the 04  (xyz) octopoles on C and N are highly correlated 
(Terpstra et al. ,  1993; Kampermann et al . ,  1994) and 
only the use of constraints can alleviate this problem, 
although never remove it altogether (El Haouzi et al. ,  
1996). We explore the solution of the phase problem for 
HMT in more detail in the next section, but these results 
for HMT would seem to support the conclusion of E1 
Haouzi et al. (1996) that "for non-centrosymmetric 

structures a 'truly experimental' electron density cannot 
be obtained from an X-ray diffraction experiment". 
However, we add the caveat that this may perhaps only 
be meaningful in exceptional cases such as HMT, 
GaAs, BN, BeO etc.,  and that there are likely to be very 
many examples of molecular crystals (such as hydrogen 
peroxide, urea, L-alanine, borazine and even acetamide 
in the present work) for which the multipole model is 
capable of providing an extremely accurate retrieval of 
structure-factor phases and, hence, a very close 
approximation to a 'truly experimental' electron 
density. 

5. The special case of hexamethylenetetramine 

We could not conclude this study without a more 
detailed exploration of phasing for HMT, since it 
appears to represent an extreme example of phase 
retrieval. One important distinction between HMT and 
other systems studied here is that for HMT the 
structure-factor expression contains terms (the xyz 
octopoles) which are invariant under the symmetry 
operations of the space group and which result in 
significant changes in structure factor phases without 
affecting the magnitudes. Can we improve upon our 

s ~. i i I 

s l  s l  "~ .... I •  

- - - - ~ i  I : " , " ' " "  ¢ - ~ l . ' "  
s ~ "" " ' " " "  I t ." 

o ... • " . - .  " :  . .  

,-- • .. - , , , ,  , , "  ,, - , ,  
~... ",, . . . . .  " ' . . ~ _ ~  : ~ ~s  

; , " ;  : I ( .  , 

° "  .*" . .  . . . ' "  s " " ". " .° ~ i -  
I "%  ," , ' "  ",, ." s ~ , ,  ~ s 

o - ~  ! ;, :/~ ~ 
~ s % . . . . . ,  l I . . .  

/ . .  " " - . . "  I s ~ ! . ".. 
I " . : . . . . .  ~ x " "  

x I s ~ ' ~  " ' ' ' " "  1 # 

I i ~  ~ . . . ~  ~ ! ~ s t ~. h 

HMT: dynamic 

key to phases: 

1. IAM model 
2. model A 
3. model B 
4. model C 
5. true phases 

, s  : • 

s/~.~s" • . , ' " ;  t ~ ~. • , l l ~ , / ~ .~  I . . . . "  : ~ . ~ . . .  
I [ [ l ~  ! . " "  " ~ . ' " ,  

1 ! ", ." "..," ~ l ' ,  .:  

l ~, . . . .  " ' "  " s - -  . . ~  
, ~: "...-- ' ii "', 
I 1 ", ""  " - .  ...# I",. 

I " ' . .  " i ~ ~ -  I " ' "  
• I " " - .  : . ' . . ' "  • . . . . ;  I . . . .  

" ' "  J ~  

. . . .  " 

' ' , ," ,{ i ' , "  , - , . '  :........" .~- , "  
~ l  -, I ,,',. • "i t . . - ' - ~  

1 ..'" "% I ~ ' -  ; %. . . . ;  
, :. , , , " . ' , , ~ . ~  

t " ,  ", " - . , ' , . "  . .  s s ~ " •  
, ,, s ", ~ "- . ' . . ' - .  ~ -  ~ o ~ 

, " ~ / , , - - , ~ "  . . . . :  ...-:.-,; - ,, " .  _ . ,"  

I ' .  " : f I . " .  
'~ ~ "'...: o . . 7 . ~  t ( " 

. ,.o', • • . . . .  , 

I - "" . . . . .  ~~~ I 

" s_~  S ~ •  % •~ %.~ I I 

. . . .  . ~ ~, ~ . 1~  ~ ~ ~ ~ ~ • 

s • . . . .  " : ~i~;~•(-'" • 

s I , '°  : ,, . , . .  i 
• " . . . .  : I " ' .  I . - " ' " ' .  

i I , :  ". " • . !  . . . . " . .  ". .,,;.:--, : . . "  s L-"  ::~,.'-:. : : 
' ~ . ¢ , "  : , .  o . , . .;- . ,-' . .:  : 

: . ' : ; ;  . ."  s ~ ' . . ' ; . , ' . . "  ° , , : . - . ; . . . . .  / , , , : . : : - . ' . . .  - 

~ -y¢,.-,, - ,  "'::-.:?::... 

• ;: , '" '"  : " ~ "s ~' ; : : - - . "  .:  
• i ' .  " ' " "  " ~ . - "  x " . . . . . . -  

%' . . . . - / i  I l ~ ~ 

c S l  

I % ~ l  l i I | -  

" , ,  i .~ ~ 

s : . . . . ,  : l "~ l , . .  . . ,  
i e;, .  , ." t t ; / ' " , ,  ; 

I : . ' . - .  : , "  I " ' "  ' " 
" ' "  " " . , "  I : : ,  • ; • 
:: ', .; ; ," s t .  ,, "".." o." . 

:, ~ • +  
• ~:, • ,,, - . , ,  ~ ;. :..'.,.,. 
¢.'.. • .., ~ ~ l ( i ~ - d ~ ' - ' l , ; ' . . . . "  : 

• , ' . , " "  " 1  , ' .  . . . . .  • 

-t2 '-- I 
Fig. 8. A comparison of  various phasing models in Fourier deformation electron densities (dynamic data) for HMT in the plane of  the C - - H  and 

C - - N  bonds (the C - - N  bond is to the right). The maps are 6 ,~ square, with contours at intervals of  0.10 e ,h-3; positive contours solid, zero 
contours dashed, negative contours dotted. 



560 RETRIEVAL OF STRUCTURE-FACTOR PHASES 

previous results for systems like HMT? One obvious 
way to attempt this is to introduce constraints, for 
example, Terpstra et al. (1993) and Kampermann et 
al. (1994) set o 4 (the population of the xyz octopole) 
on C to a value typical of a tetrahedral C atom in their 
constrained refinements for HMT. El Haouzi et al. 
(1996) have recently discussed the automatic detection 
of poorly determined parameters in charge density 
analysis with particular reference to the phase problem 
for non-centrosymmetric systems and the use of 
'singular value decomposition' [SVD (e.g. Press, 
Flannery, Teukolsky & Vetterling, 1986)] to alleviate 
the problem. In essence the approach pursued by El 
Haouzi et al. (1996) is diagonalization of the 
least-squares normal matrix, followed by examination 
of the eigenvectors corresponding to its lowest 
eigenvalues. This is not really SVD as we know it 
and as described by Press et al. (1986), but closer to 
'eigenvalue filtering' [for a nice discussion of the 
differences between the two, see Watkin (1994)1. SVD 
and eigenvalue filtering have been incorporated into 
the XD program package (Koritsanszky, Howard, 
Mallinson, Su, Richter & Hansen, 1995), although 
we are unaware of any pubished applications to date. 
Our approach here is along the lines of these works 

and embodies eigenvalue filtering (also called 
characteristic-value or latent-root filtering, or 
principal-component analysis). 

Crystallographic least-squares, especially in charge 
density analysis, is a non-linear process and usually 
involves iteratively linearizing the model structure 
factors and solving the normal equations to obtain a 
vector of parameter shifts; iteration is completed when 
zero shifts result. The normal equations 

where 

and 

AAp = b 

,91F<(H)I o':'71F<(H) I 
A~j = ~H w(H) ,9,0,. apS 

~lFc(I-l)l ( IFo (H) I -  IF~(H)I) 
b i  - -  ~ H  w ( H )  ~ P i  

can be solved by diagonalization, or a rotation in the 
parameter space 

A = UDU t, 
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Table 2. Comparison of results from multipole refinements against dynamic model data for HMT: conventional 
unconstrained refinement versus eigenvalue filtering and eigenvalue filtering with a slack constraint on the scale 

factor 

Octopole populations refer to multipole functions normalized such that their absolute value integrates to 2 electrons. For the phase 
analysis, quantities are in the same units as in Figs. 2-6. Target values of the molecular properties from the original ab initio 
wavefunctions are (r 2) = -38.83 eik 2 and 5 (xyz) = -8 .92 e/k 3. 

Multipole model 

Refinement indices 
wR (F) (%) 0.55 
Scale factor 1.00 (2) 
04 (C) -0 .783 (40) 
04 (N) -0.331 (41) 

Molecular properties 
(r 2) (e ,~,2) -38 .0  (23) 
~ (xyz) (e A 3) -5 .3  (16) 

Phase analysis 
(A~o) --1.87 
r.m.s.(Atp) 3.05 
I00 × (IF, Iz~o) /F(O00) -0.137 
100 x r.m.s.(IFtlA~o)/F(O00) 0.343 
r.m.s.(Sp) (e :k -3) 0.077 

Conventional Eigenvalue filtering 
refinement Eigenvalue filtering with scale constraint 

B C B C B C 

0.49 0.85 0.59 0.90 0.61 
1.00 (5) 1.07 (5) 1.03 (2) 1.00 (1) 1.00 (1) 

-0 .599  (43) -0 .166  (7) -0 .249 (0) -0 .177 (7) -0 .283 (1) 
-0 .037 (57) 0.319 (15) 0.361 (1) 0.327 (15) 0.341 (l) 

-37 .6  (35) -57.1 (56) -45 .6  (20) -38 .2  (7) -39 .3  (4) 
- 5 . 8  (21) 6.0 (23) -4 .7  (13) -6 .1  (10) -9 .1  (7) 

-0 .80  0.69 0.61 0.59 0.44 
1.52 2.23 1.73 2.15 1.63 

-0 .069  0.039 0.030 0.036 0.020 
0.201 0.109 0.063 0.075 0.051 
0.041 0.028 0.017 0.019 0.013 

D U t A p  = U t b  

o r  

DAp' = b'. 

The rotation matrix U contains eigenvectors which 
relate the new set of (orthogonal) parameters, p', to the 
old and the elements of D, the eigenvalues, indicate the 
rate of change of the residual with respect to the new 
parameters. D -~ is another diagonal matrix with non- 
zero elements just the reciprocal of those in D [i.e. 
( D -  l)ii - -  (D i i ) -  I ], hence the solution is straightforward 
provided n o  Dii are zero or very close to zero (i.e. the 
original normal matrix is not 'ill-conditioned'). This 
last requirement is our starting point, since ill- 
conditioning may result from either numerical problems 
(or scaling) or correlations between the original 
parameters, the latter being our present interest. As 
described by Watkin (1994), if any Di/are 'small', their 
inverse can be set to zero, hence filtering out the small 
eigenvalues. Shifts are then computed for the remaining 
parameters and the solution rotated back into the 
original parameter space. Thus, eigenvalue filtering in 
non-linear least-squares is a procedure which iteratively 
yields constraints on the parameter shifts, not on the 
parameters themselves. 

El Haouzi et al. (1996) utilized the eigenvectors 
corresponding to the lowest eigenvalues of the normal 
matrix to deduce plausible constraints on several 
parameters in multipole refinements for GaAs and 
LiB305. We decided to try a more automated 
procedure and apply eigenvalue filtering automatically 
in refinements using our model dynamic data on 
HMT. For this purpose we defined a 'small' 
eigenvalue to be one less than 5 × 10 -7 times the 

largest eigenvalue of the normal matrix. This is an 
arbitrary condition, but one which leads to filtering of 
only the lowest one or two eigenvalues in these 
refinements, and was found empirically to virtually 
eliminate the 'phase problem' and yield acceptable 
values of the properties and scale factor. The 
outcomes from the filtering process, especially derived 
physical properties of the molecular electron density 
and structure-factor phases, can be assessed critically 
in the present case because we are working with a 
model electron density with known properties and 
known structure-factor phases. Refinement details, 
properties and phase analysis are summarized in 
Table 2 for multipole models B and C, and compared 
with the results of the conventional refinements from 
the previous section. 

Clearly, the use of eigenvalue filtering in this case 
represents a dramatic improvement in phase retrieval 
but, in the absence of a constraint on the overall scale 
factor, sometimes provides poor estimates of second 
and octopole moments. For this reason alone we also 
incorporated a 'slack constraint' (see e.g. Hirshfeld, 
1977) on the scale factor by including F(000) as an 
additional observation, with unit weight in this case. 
The phase analysis results in Table 2 are readily 
compared with Figs. 2-6. Eigenvalue filtering reduces 
mean phase angle errors to near 0.5 ~' and below, but 
r.m.s, phase errors are not reduced quite as 
dramatically. Arc-length errors show a large reduc- 
tion, however, and for model C with eigenvalue 
filtering they are now completely in accordance with 
the more well behaved systems such as urea, peroxide 
and borazine. The approximate error in the electron 
density is also substantially reduced, from 0.077 
(conventional refinement, model B) to 0.013etk -3 
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(eigenvalue filtering plus scale constraint, model C). 
In summary, the effect of the filtering process on the 
structure-factor phases is remarkable, removing all 
anomalous behaviour displayed by HMT in conven- 
tional refinements. Fig. 10 provides a dramatic 
pictorial proof of this, where Fourier deformation 
density maps are presented using phases from the new 
model B and C refinements; the maps can be 
compared directly with those for models B and C in 
Fig. 8, and with the correctly phased map in that 
figure. The agreement with the correctly phased map 
is now quite impressive, with almost quantitative 
agreement observed for all significant features. 
Importantly, eigenvalue filtering has removed all 
evidence of the spurious peak near the N atom on 
the inside of the molecular cage. 

It is of some interest to examine the eigenvectors 
which have been filtered out of the refinements and their 
corresponding relative eigenvalues. Ignoring all other 
contributions except those involving the populations 
(o4) of the xyz octopoles on C and N, the eigenvectors 
removed from the final cycle of refinement are 
summarized: 

(i) Eigenvalue filtering only 
Model B: lowest eigenvector zeroed. 

Eigenvector Relative eigenvalue 
0.814 × o4(C ) + 0.579 x o4(N) 1.9 × 10 -7 

Model C: lowest two eigenvectors zeroed. 
Eigenvector Relative eigenvalue 
-0 .728  × o4(C ) + 0.672 × o4(N ) 2.2 × 10 -7 
0.678 x o4(C ) + 0.735 × o4(N ) 3.4 x 10 -8 

(ii) Eigenvalue filtering plus scale constraint 
M o d e l  B: lowest  e igenvector  zeroed.  

Eigenvector Relative eigenvalue 
0 . 8 0 8  X o 4 ( C  ) -[- 0 . 5 8 8  × o4(N ) 2 . 4  x 1 0  - 7  

Model C: lowest two eigenvectors zeroed. 
Eigenvector Relative eigenvalue 
-0 .797  x o4(C ) + 0.591 x oa(N ) 3.2 × 10 -7 
0.597 x o4(C ) + 0.802 × o4(N) 2.9 x 10 -8 

As anticipated from the results for GaAs  reported by  
El Haouzi  et al. (1996), the lowest  e igenvec tors  invo lve  
largely (but not entirely)  the sum and di f ference  o f  the 
two octopole  populat ions.  For mode l  B only  the lowes t  
e igenva lue  is r emoved ,  resulting in a shift constraint on 
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Fig. 10. The effect of eigenvalue 
filtering on Fourier deformation 
electron densities (dynamic data) 
for HMT. Mapping plane and 
contours are the same as in Fig. 
8 and comparison should be made 
with maps 3 and 4 of Fig. 8 (which 
correspond to using phases from 
conventionally refined models B 
and C, respectively) and map 5 of 
Fig. 8 (the correctly phased defor- 
mation density)• 
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the sum of the 04 populations, whereas for model C both 
the sum and difference are effectively constrained, 
hence the e.s.d. 's  of essentially zero for those refine- 
ments in Table 2. (The e.s.d. 's are not identically zero 
because the constraints on the shifts involve more than 
just the two o 4 populations). Another interesting statistic 
in Table 2 is the weighted R factor, which suggests that 
the cost of these constraints on the residual is 
substantial. 

Since the eigenvalue filtering technique is applied 
here to non-linear least-squares, it results in con- 
straints on shifts which are updated on each successive 
cycle. This implies that the final result reported in 
Table 2 are not unique, which is indeed the case: the 
results depend upon the starting parameters. For the 
refinements in Table 2 involving eigenvalue filtering, 
model B commenced with all populations of higher 
multipoles equal to zero, while model C commenced 
with the populations from model B (zero starting 
populations cannot be used with simultaneous refine- 
ment of populations and radial exponents). We believe 
these initial parameters are reasonable in each case 
and probably offer the least biased choices in the 
circumstances. This does raise a question about the 
value of the results of eigenvalue filtering quoted in 
Table 2 and we observe that although in each case 
they represent only one of many possible sets of 
results which may be obtained, other results obtained 
using small non-zero starting populations in model B 
are similar and yield virtually identical sets of phases. 

Molecular properties derived from the multipole 
refined electron density are also important (Spackman 
& Byrom, 1996) and in Table 2 we provide estimates 
of the trace of the molecular second moment tensor 
(r 2) and the octopole moment ~ (xyz) for HMT. Clearly 
eigenvalue filtering applied in a routine manner as 
carried out here can impose a constraint which leads to 
a significantly worse scale factor (by as much as 7 % in 
this case) and hence compromise estimates of the 
molecular properties which are derived from the 
rescaled electron distribution. The estimate of the 
octopole moment from model B refinement with 
eigenvalue filtering has the wrong sign, but imposition 
of the additional slack constraint on the scale factor 
results in values in excellent agreement with the target 
ab initio values. In this context, it is interesting to 
compare the present results with values of - 3 . 5  (5) (no 
constraint on o 4) and - 4 . 8 ( 5 ) e A  3 (constraint on o 4) 
from analyses of the 120K experimental data (see 
Kampermann et al.,  1994). 

A further comment emphasizing the conclusions of 
Terpstra et al. (1993) is worthwhile. These authors 
stated that the large least-squares correlation observed 
between the o 4 populations in HMT is a consequence 
of their small contribution to the magnitudes of the 
structure factors. We have confirmed this in our model 
studies by examining the changes in structure-factor 

magnitudes and phases caused by setting 04 on both C 
and N to zero. We found that very few reflections 
display significantly large changes in magnitude (for 
example, compared with a typical experimental error) 
and those that do would be the very weakest 
experimentally, while phase changes of several 
degrees or more are commonplace. This is largely a 
consequence of the relatively small octopolar deforma- 
tions, but it is further exacerbated by two conse- 
quences of the structure: (i) the xyz octopoles 
contribute precisely zero to the 27% of reflections 
with restricted phases (Table 1) and (ii) the xyz 
octopole on C affects only the imaginary part of the 
structure factor. 

6. Conclusions 

The results obtained from the model data sets used in 
this study may represent the limiting case with regard 
to what can be obtained for real data (i.e. the best 
case scenario). We emphasize that several important 
factors have been ignored in this study: the effect of 
a higher sin0/), cut-off, the use of more flexible 
radial functions (or higher angular functions), the use 
of other weighting schemes or the influence of 
experimental-type errors in the least-squares process. 
Nevertheless, the studies which have been undertaken 
suggest that if sufficiently accurate experimental data 
can be collected, then the accurate retrieval of phases 
obtained in this work is likely to be replicated in 
experimental studies for many molecular crystals. 

However, we would advise caution in all charge 
density studies on non-centrosymmetric crystals, espe- 
cially those where high correlations are observed 
between multipole parameters (usually odd-order) on 
different atoms. In those cases constraints may in fact 
be necessary and we suspect that the most useful of 
these may be those which impose a symmetry on the 
local deformation functions higher than the site 
symmetry. Effectively this amounts to imposing our 
particular chemical bias on the outcome of a charge 
density study. This will, of course, mean that in these 
cases the results are no longer 'truly experimental', but 
nevertheless they should be of considerable use and no 
doubt more meaningful than those derived from an 
unconstrained model. An alternative would appear to be 
the use of eigenvalue filtering, as applied above to 
HMT, or some variant of that procedure. We have clear 
evidence that it can be highly successful in retrieving 
structure-factor phases with the present model data. 
The effects of experimental errors, both random and 
systematic, have not been explored, but it would seem 
most desirable to test its application on experimental 
data for HMT. 
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